Contents

Central Limit Theorem

From an engineering perspective, sequences of random variables converging to a known distribution helps in desigining efficient systems.

Define Sn=x1+x2++xnS_n = x_1 + x_2 + \cdots + x_n as the sequence sum of independent and identically distributed (i.i.d.) random variables with mean E[x]\mathbb{E}[x] and variance σ2\sigma^2.

For a sequence of i.i.d. random variables x1,x2,x_1, x_2, \cdots. For n1n \leq 1 we have, Sn=i=1nxn S_n = \sum\limits_{i=1}^n x_n

Then the law of large numbers gives, limnSnn=limn1ni=1nxn=E[x] \lim\limits_{n \rightarrow \infty}\frac{S_n}{n} = \lim\limits_{n \rightarrow \infty}\frac{1}{n} \sum\limits_{i=1}^n x_n = \mathbb{E}[x]

Meaning the sequence of empirical averages Snn\frac{S_n}{n} converges asymptotically to the first moment E[x]\mathbb{E}[x].

Theorem states that the distribution of a sequence of random variable SnS_n converges asymptotically to the normal distribution. More formally, let x1,x2,x_1, x_2, \cdots be the i.i.d. random variables each with mean E[x]\mathbb{E}[x] and variance σ2\sigma^2.

For any xRx \in \mathbb{R}, the distribution, SnnE[x]σn \frac{S_n - n\mathbb{E}[x]}{\sigma \sqrt{n}}

converges to the normal distribution. Asymptotically we have, limnPr(SnnE[x]σnx)=x12πeτ22dτ \lim\limits_{n \rightarrow \infty} Pr\bigg(\frac{S_n - n\mathbb{E}[x]}{\sigma \sqrt{n}} \leq x\bigg) = \int_{-\infty}^{x} \frac{1}{\sqrt{2\pi}} e^{\frac{-\tau^2}{2}} d\tau

For a sufficiently large nn, the cumulitive density function (CDF) of SnS_n as, FSn(x)=Pr(Snx)=Pr(SnnE[x]σnxnE[x]σn) F_{S_n}(x) = Pr(S_n \leq x) = Pr\Bigg(\frac{S_n - n\mathbb{E}[x]}{\sigma\sqrt{n}} \leq \frac{x - n\mathbb{E}[x]}{\sigma\sqrt{n}}\Bigg) Φ(xnE[x]σn) \approx \Phi\Bigg(\frac{x - n\mathbb{E}[x]}{\sigma\sqrt{n}}\Bigg)

Where Φ()\Phi(\cdot) is the CDF of a normal random variable.