NeurWIN: Neural Whittle Index Network for Restless Bandits Via Deep RL

Khaled Nakhleh ${ }^{1}$, Santosh Ganji1, Ping-Chun Hsieh ${ }^{2}$, -Hong Hou ${ }^{1}$, Srinivas Shakkottai ${ }^{1}$
${ }^{1}$ Texas A\&M University. ${ }^{2}$ National Chiao Tung University

TEXAS A\&M

NEURAL INFORMATION PROCESSING SYSTEMS

Overview

Setting: N Restless bandits referenced by $i=1,2, \ldots, N$. Control policy π activates M out of N bandits in each timestep.

Objective: Maximize the total discounted rewards,

$$
\mathbb{E}_{\pi}\left[\sum_{t=0}^{\infty} \sum_{i=1}^{N} \beta^{t} r_{i}[t]\right]
$$

Challenges: Intractable to find the optimal control policy for restless bandits - Restless bandits evolve with two kernels $P_{i, a c t}\left(s_{i}[t]\right)$ and $P_{i, p a s s}\left(s_{i}[t]\right)$ whether they are activated $(a[t]=1)$ or left passive $(a[t]=0)$.

Exponentially growing state space in N.
Approach: Decomposition through index-based policies. Introduce NeurWIN a deep RL algorithm that learns the Whittle index of a single bandit. For a sequential decision-making problem, we propose an index-based control policy for restless bandits, which change their states at each timestep. The learning algorithm, called NeurWIN, trains a neural network on a single bandit, and assigns a Whittle index for each bandit's state in the state space The control performance is asymptotically optimal in the number of bandits.

Background: Index Policies

The index function $W_{i}\left(s_{i}[t]\right)$ assigns a state index independent of other arms
For a single arm, an activation policy determines whether to activate the arm under a given activation cost λ.

The activation policy objective is to maximize the total discounted net reward,

$$
\mathbb{E}\left[\sum_{t=0}^{\infty} \beta^{t}(r[t]-\lambda a[t])\right]
$$

Optimal activation policy activates for a states' set under a λ denoted by $S(\lambda)$
Definition (Indexability): An arm is said to be indexable if $S(\lambda)$ decreases to ∞. A restless bandit problem is said to be indexable if all arms are indexable.

NeurWIN Training a neural network on a single simulator called Env (λ)

NeurWIN's Learned Index Performance

Demonstrate NeurWIN's performance for three restless bandit problems.

- NeurWIN performs better than other deep RL algorithms, and respective baselines in each case Deadline Scheduling [1]
Vehicle charging problem, with N stations modelled as arms. M stations can be activated in a timestep Problem has a closed-form Whittle index called the deadline index.

> Theorem 1. If the arm is strongly indexable, then for any $\gamma>0$, there exists a positive ϵ such that any ϵ-optimal neural network controlling $\operatorname{Env}(\lambda)$ is also γ Whittle-accurate.

Figure showing the strong indexability condition holds for the three restless bandit problems

NeurWIN With Noisy Simulators

Added independent Gaussian random variables $G_{\text {act,s }}$ and $G_{\text {pass,s }}$ to rewards

$$
\begin{aligned}
& R_{\text {act }}^{\prime}(s)=\left(1+G_{\text {act }, s}\right) R_{\text {act }}(s) \\
& R_{\text {pass }}(s)=\left(1+G_{\text {pass }, s}\right) R_{\text {pass }}(s)
\end{aligned}
$$

NeurWIN trained for different level of errors: $10 \%, 20 \%, 40 \%$.
Performance degrades slightly. Performance remains similar or superior to baseline policies

Conclusion And Future Work

NeurWIN is a deep RL method for estimating the Whittle index. Performance was measured for three restless bandit problems, with it exceeding or matching state-of-the-art policies. Future work includes,

- Offline policy extension: construct a predictive model for each arm from offline-sampled data.
- Non-strongly indexable cases: adding a pre-processing step to NeurWIN to verify strong indexability. Provide performance thresholds for non-indexable arms.

References

$11]$. Yu, Y. Xu, and L. Tong. Deadine sch
Automatic Control, $63(8): 2343-2358,2018$.
[2] Ciara Pike-Burke and Steffen Gurnewalder. Recovering ban
Information Processing Systems, pages 14122-14131, 2019.
Tromation Processing Systems, pages 14122-14131, 2019 .
[3] Samuli Aalto, Pasi Lassila, and Prajiwal Osti. Whittle index approach to size-aware scheduling with time-varying channels. In Proceedings of the 2015 ACM SIGMETRICS International
Conference on Measurement and Modeling of Computer Systems pages $57-69,2015$

回回 TRPME ~~~4 도분

Definition (ϵ-optimal neural network): A neural with parameters θ is said to be ϵ-optimal if there exists a small positive number δ such that

