NeurWIN: Neural Whittle Index Network for Restless Bandits Via Deep RL

Overview

- **Setting:** N Restless bandits referenced by i = 1, 2, ..., N. Control policy π activates *M* out of *N* bandits in each timestep.
- **Objective:** Maximize the total discounted rewards,

$$\mathbb{E}_{\pi}\left[\sum_{t=0}^{\infty}\sum_{i=1}^{N}\beta^{t}r_{i}[t]\right]$$

- Challenges: Intractable to find the optimal control policy for restless bandits.
 - Restless bandits evolve with two kernels $P_{i,act}(s_i[t])$ and $P_{i,pass}(s_i[t])$ whether they are activated (a[t] = 1) or left passive (a[t] = 0).
 - Exponentially growing state space in N.
- Approach: Decomposition through index-based policies. Introduce NeurWIN: a deep RL algorithm that learns the *Whittle index* of a single bandit. For a sequential decision-making problem, we propose an index-based

control policy for restless bandits, which change their states at each timestep. The learning algorithm, called NeurWIN, trains a neural network on a single bandit, and assigns a Whittle index for each bandit's state in the state space. The control performance is asymptotically optimal in the number of bandits.

Background: Index Policies

- The index function $W_i(s_i[t])$ assigns a state index independent of other arms.
- For a single arm, an activation policy determines whether to activate the arm under a given activation cost λ .
- The activation policy objective is to maximize the total discounted net reward,

$$\mathbf{E}\left[\sum_{t=0}^{\infty}\beta^{t}(r[t]-\lambda a[t])\right]$$

- Optimal activation policy activates for a states' set under a λ denoted by $S(\lambda)$.
- **Definition (Indexability):** An arm is said to be indexable if $S(\lambda)$ decreases monotonically from the set of all states to the empty set as λ increases from $-\infty$ to ∞ . A restless bandit problem is said to be indexable if all arms are indexable.

NeurWIN Training a neural network on a single simulator called $Env(\lambda)$

Definition (ϵ **-optimal neural network**): A neural with parameters θ is said to be ϵ -optimal if there exists a small positive number δ such that, $\tilde{Q}_{\theta}(s,\lambda) \ge \max\{Q_{\lambda,act}(s_1), Q_{\lambda,pass}(s_1)\} - \epsilon \text{ for all } s_0, s_1, \text{ and } \lambda \in [f_{\theta}(s_0) - \delta, f_{\theta}(s_0) + \delta]$

Khaled Nakhleh¹, Santosh Ganji¹, Ping-Chun Hsieh²,

I-Hong Hou¹, Srinivas Shakkottai¹

¹ Texas A&M University. ² National Chiao Tung University

NeurWIN's Learned Index Performance

• Demonstrate NeurWIN's performance for three restless bandit problems.

• NeurWIN performs better than other deep RL algorithms, and respective baselines in each case

Deadline Scheduling [1] • Vehicle charging problem, with N stations modelled as arms. M stations can be activated in a timestep. Problem has a closed-form Whittle index called the deadline index.

• NeurWIN trains a neural network with parameters θ to approximate the Whittle index.

• Neural network produces a real number $f_{\theta}(s)$ as the index while minimizing $|f_{\theta}(s) - W(s)|$.

Definition (Whittle Accurate): A neural network with parameters θ is said to be γ -Whittle accurate if $|f_{\theta}(s) - W(s)| \leq \gamma$ for all s.

• Let $\tilde{Q}_{\theta}(s,\lambda)$ be the average reward of applying a neural network to $Env(\lambda)$ for initial state s.

[3] Samuli Aalto, Pasi Lassila, and Prajwal Osti. Whittle index approach to size-aware schedulir with time-varying channels. In Proceedings of the 2015 ACM SIGMETRICS International Conference on Measurement and Modeling of Computer Systems, pages 57–69, 2015.

Theorem 1. If the arm is strongly indexable, then for any $\gamma > 0$, there exists a positive ϵ such that any ϵ -optimal neural network controlling $Env(\lambda)$ is also γ -Whittle-accurate.

$$R_{act}^{'}(s) = (1 + G_{act,s})R_{act}(s)$$
$$R_{pass}^{'}(s) = (1 + G_{pass,s})R_{pass}(s)$$

offline-sampled data.

Non-strongly indexable cases: adding a pre-processing step to NeurWIN to verify strong indexability. Provide performance thresholds for non-indexable arms.

References

[1] Z. Yu, Y. Xu, and L. Tong. Deadline scheduling as restless bandits. IEEE Transactions on Automatic Control, 63(8):2343–2358, 2018.

[2] Ciara Pike-Burke and Steffen Grunewalder. Recovering bandits. In Advances in Neural Information Processing Systems, pages 14122–14131, 2019.

