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Challenges with Current Methods

• Network Utility Maximization (NUM) showed success in 

finding optimal solutions for traditional objective functions. 

• Current applications for real-time sensory estimation and 

video streaming use other metrics such as Age of 

Information (AoI).

• NUM techniques almost always fail when optimizing for 

newer performance metrics such as Age of Information 

(AoI) and Quality of Experience (QoE).

• NUM techniques such as primal-dual decomposition or 

Lyapunov drift-plus penalty only capture first order-

statistics (i.e. mean).



Our Approach: 

Second-Order Optimization

• We can capture short-term system behavior by observing 

both the mean and temporal variance of random delivery 

processes.

• Newer metrics involve higher-order behaviors to capture short-term 

network behavior.

• Given channel models, we derive the second-order 

capacity region consisting of all mean and temporal 

variance of packet delivery processes.

• We propose a new scheduling policy called Variance-

Weighted Deficit (VWD), and prove it achieves every inner-

point in the second-order capacity region.

• We apply VWD on an open problem: Optimizing AoI over 

independent Gilbert-Elliott channels.



Wireless System Framework

• One Access Point (AP) serving 𝑁
clients referenced as 𝑖 = 1,2,… ,𝑁 at 

timeslots 𝑡 = 1,2,… .

• Each client is associated with an ON-

OFF channel. The AP observes the 

channels at each timestep.

• AP can choose one client with an ON-

channel for transmission at time 𝑡.

AP

𝒊 = 𝟒

𝒊 = 𝟓

𝒊 = 𝟔

𝒊 = 𝟑

𝒊 = 𝟐

𝒊 = 𝟏

ON

OFF

Fig. 1: AP serving six clients.



Second-Order Model of 

Wireless Channels

• Given a subset of clients 𝑆 ⊆ {1,2,… ,𝑁}. Let 𝑋𝑠(𝑡) be the 

indicator function that at least one client has an ON 

channel at time 𝑡.

• Denote the channel mean rate of 𝑆 as 

𝑚𝑠 ≔ 𝑙𝑖𝑚𝑇→∞
σ𝑡=1
𝑇 𝑋𝑆 𝑡

𝑇
.

• Denote the channel temporal variance of 𝑆 as 

𝑣𝑠
2 ≔ 𝐸[( lim

𝑇→∞

σ𝑡=1
𝑇 𝑋𝑠 𝑡 −𝑇 𝑚𝑠

𝑇
)
2

].

• Define the second-order channel model as a collection of 

all the mean and temporal variance of subsets 

𝑚𝑠, 𝑣𝑠
2 𝑆 ⊆ {1,2,… ,𝑁}}.

• How to define a client’s mean rate and temporal variance?



Second-Order Model for 

Application Performance

• Let 𝑍𝑖 𝑡 be the indicator function that client 𝑖 receives 

a packet at time 𝑡.

• Define client 𝑖 service mean rate as 𝜇𝑖 ≔ 𝑙𝑖𝑚𝑇→∞
σ𝑡=1
𝑇 𝑍𝑖 𝑡

𝑇
.

• Define client 𝑖 service temporal variance as  

𝜎𝑖
2 ≔ 𝐸[( lim

𝑇→∞

σ𝑡=1
𝑇 𝑍𝑖 𝑡 −𝑇 𝜇𝑖

𝑇
)
2

].

• Utility of client 𝑖 is a function of 𝜇𝑖 , 𝜎𝑖
2 , denoted by 

Fi 𝜇𝑖 , 𝜎𝑖
2 .

• Goal to maximize σ𝑖=1
𝑁 𝐹𝑖 𝜇𝑖 , 𝜎𝑖

2 , given network constraints.

• How to define the network constraints?



Second-Order Model of 

Network Constraints

• Given a second-order channel model 𝑚𝑠, 𝑣𝑠
2 𝑆 ⊆

{1,2,… ,𝑁}} at time 𝑡.

• Define the second-order capacity region as the set of all 

𝜇𝑖 , 𝜎𝑖
2 1 ≤ 𝑖 ≤ 𝑁} such that a policy achieves 

• 𝑙𝑖𝑚𝑇→∞
σ𝑡=1
𝑇 𝑍𝑖 𝑡

𝑇
= 𝜇𝑖 .

• 𝐸[( lim
𝑇→∞

σ𝑡=1
𝑇 𝑍𝑖 𝑡 −𝑇 𝜇𝑖

𝑇
)
2

] ≤ 𝜎𝑖
2 for all clients 𝑖 = 1,2, … , 𝑁.



Outer-Bound of Second-Order 

Capacity Region

• Theorem. The second-order delivery model can be in the 

capacity region if the following holds

• Sum of clients’ mean rate in the subset 𝑆 is less than or 

equal to channel mean σ𝑖∈𝑆 𝜇𝑖 ≤ 𝑚𝑠 for all 𝑆 ⊆
{1,2,… ,𝑁}. 

• Sum of all clients’ mean rate sum to the channel mean 

rate σ𝑖=1
𝑁 𝜇𝑖 = 𝑚 1,2,…,𝑁 .

• Sum of clients’ temporal variance square root is bigger or 

equal to channel temporal variance σ𝑖=1
𝑁 𝜎𝑖

2 ≥ 𝑣 1,2,…,𝑁
2 .

• Client mean rate 𝜇𝑖 ≥ 0 for all 𝑖.



Inner-Bound of Second-Order 

Capacity Region

• Theorem. The second-order delivery model is in the 

capacity region if the following holds

• Sum of clients’ mean rate in the subset 𝑆 is less than 

channel mean rate σ𝑖∈𝑆 𝜇𝑖 < 𝑚𝑠 for all 𝑆 ⊊ {1,2,… ,𝑁}. 

• Sum of all clients’ mean rate sum to the channel mean rate 

σ𝑖=1
𝑁 𝜇𝑖 = 𝑚 1,2,…,𝑁 .

• Sum of clients’ temporal variance is bigger or equal to the 

channel temporal variance σ𝑖=1
𝑁 𝜎𝑖

2 ≥ 𝑣 1,2,…,𝑁
2 .

• Client mean rate 𝜇𝑖 ≥ 0 and client temporal variance 𝜎𝑖
2 >

0 for all 𝑖.
• How to achieve this inner-bound?



Variance-Weighted Deficit 

(VWD) Policy

• Theorem. VWD policy achieves every point in the inner 

bound of second-order capacity region.

• Given a point (𝜇𝑖 , 𝜎𝑖
2) in the bound.

• At time 𝑡, define client 𝑖 deficit as 𝑑𝑖 𝑡 = 𝑡𝜇𝑖 − σ𝜏=1
𝑡 𝑍𝑖 𝜏 .

• From clients with ON channels, the controller picks the 

client with the largest 
𝑑𝑖 𝑡−1

𝜎𝑖
2

.

• Since we are interested in AoI performance, how can we 

measure it for a policy such as VWD?



Problem we Consider

• Optimize AoI by deriving the second-order model over 

Gilbert-Elliot channels. 

• Gilbert-Elliot channel: two-state 

Markov process with transition probabilities 𝑝𝑖 and 𝑞𝑖. 

• Each client generates an update with probability 𝜆𝑖 and 

only keeps the newest update in memory. 

• Age of Information (AoI): time difference between the 

newest information update at the source and the delivered 

information at the destination.

Fig. 2: Gilbert-Elliot channel.



Second-Order Model for 

Gilbert-Elliott Channels

• Under the Gilbert-Elliot channels, for all 𝑆

𝑚𝑠 = 1 − ς𝑖∈𝑆
𝑝𝑖

𝑝𝑖+𝑞𝑖
,

𝑣𝑆
2 = 2 σ𝑘=1

∞ ς𝑖∈𝑆 𝐺𝑖 𝑘 + 1 ς𝑖∈𝑆
𝑝𝑖

𝑝𝑖+ 𝑞𝑖
ς𝑖∈𝑆

𝑝𝑖

𝑝𝑖+ 𝑞𝑖
+ς𝑖∈𝑆

𝑝𝑖

𝑝𝑖+ 𝑞𝑖
− ς𝑖∈𝑆

𝑝𝑖

𝑝𝑖+ 𝑞𝑖

2

,

with 𝐺𝑖 𝑘 =
𝑝𝑖

𝑝𝑖+𝑞𝑖
+

𝑞𝑖

𝑝𝑖+𝑞𝑖
1 − 𝑝𝑖 − 𝑞𝑖

𝑘−1.

• Optimize AoI over Gilbert-Elliot channel model. How to express AoI 

using the second-order model?



Second-Order Expression of 

AoI of (𝜇𝑖 , 𝜎𝑖
2)

• Let 𝐵𝑖 𝑛 be the time between 𝑛𝑡ℎ and 𝑛 + 1𝑡ℎ deliveries.

• Long-term average AoI (theoretical AoI) 𝐴𝑜𝐼𝑖 is given as 

𝐴𝑜𝐼𝑖 =
𝐸 𝐵𝑖

2

2𝐸[𝐵𝑖]
+

1

𝜆𝑖
−

1

2
.

• Estimate 𝐴𝑜𝐼𝑖 from a Brownian motion random process 

𝐵𝑀𝜇𝑖,𝜎𝑖
2 𝑡 .

• Approximate 𝐵𝑖(𝑛) by the amount of time the Brownian 

process increases by 1.



Second-Order Expression of 

AoI of (𝜇𝑖 , 𝜎𝑖
2)

• Therefore, we can approximate 𝐴𝑜𝐼𝑖 (empirical AoI) as

𝐴𝑜𝐼𝑖 ≈
1

2

𝜎𝑖
2

𝜇𝑖
2 +

1

𝜇𝑖
+

1

𝜆𝑖
−

1

2
.

• Second-order optimization problem involves finding policy 

that maximizes σ𝑖=1
𝑁 𝐹𝑖 𝜇𝑖 , 𝜎𝑖

2 .

• For Gilbert-Elliott channels, what is the AoI performance function?



Finding Clients’ (𝜇𝑖 , 𝜎𝑖
2) for VWD

• With the goal of minimizing AoI over Gilbert-Elliot 

channels, we define objective function for client 𝑖 as 

𝐹𝑖 𝜇𝑖 , 𝜎𝑖
2 = −

1

2

𝜎𝑖
2

𝜇𝑖
2 +

1

𝜇𝑖
−

1

𝜆𝑖
+

1

2
.

• We obtain the optimal delivery model for our VWD policy 

using steps:

1. Find all sets of the second-order channel model 𝑚𝑠, 𝑣𝑠
2 𝑆 ⊊

{1,2, … , 𝑁}}.

2. Calculate client mean rates that satisfy σ𝑖∈𝑆 𝜇𝑖 ≤ 𝑚𝑠 − 𝛿 and 

σ𝑖=1
𝑁 𝜇𝑖 = 𝑚 1,2,…,𝑁 .

3. Client’s temporal variance is lower bounded by channel temporal 

variance σ𝑖=1
𝑁 𝜎𝑖

2 ≥ 𝑣 1,2,…,𝑁
2 .

4. 𝜇𝑖 ≥ 0 and 𝜎𝑖
2 > 0 for all 𝑖.



AoI Estimation of a Single Client

• Evaluate the theoretical AoI and 

empirical AoI on a single client.

• Results averaged over a 1000
independent runs. 

• Each run contains 50000
timeslots.

• Empirical AoI is almost identical 

to the theoretical AoI.
Fig. 3: Model validation for a single client.



Simulations Setting

• Compare VWD against policies: 

o Whittle index: schedules the highest-indexed ON client    

𝑊𝑖 𝑡 =
𝐴𝑜𝐼𝑖

2(𝑡)

2
−

𝐴𝑜𝐼𝑖 𝑡

2
+

𝐴𝑜𝐼𝑖 𝑡

𝑞𝑖/(𝑝𝑖+𝑞𝑖)
.

o Stationary randomized: picks an ON client randomly 

proportional to 𝜇𝑖.

o Max weight: picks an ON client with the largest 
𝐴𝑜𝐼𝑖 𝑡 −𝑧𝑖 𝑡

𝜇𝑖
with 

𝑧𝑖 𝑡 =
1

𝜆𝑖
.

• Simulations are ran for 1000 independent runs for 5000 

timeslots.

• 𝜆𝑖 randomly chosen from the range (
0.1

𝑁
,
1

𝑁
).

• Objective is to minimize σ𝑖 𝛼𝑖 𝐴𝑜𝐼𝑖 , with client weight 𝛼𝑖.



AoI with Equal Weights’ Results

• Three different systems with: 5, 10, and 20 clients. 

• VWD outperforms other policies for 𝑁 = 10 and 𝑁 = 20. VWD 

performs similar to Max weight for 𝑁 = 5.

• VWD’s empirical AoI is close to the theoretical AoI compared 

to other policies. VWD AoI approximation is accurate.

Fig. 4: Uniform empirical AoI results averaged over 1000 runs.



Weighted AoI Results

Fig. 5: Weighted empirical AoI results averaged over 1000 runs.

• Weights 𝛼𝑖 were randomly selected from the range (1,5).

• VWD outperforms other scheduling policies in the weighted 

AoI setting.

• VWD’s empirical AoI is close to the theoretical AoI 

compared to other policies. VWD AoI approximation is 

accurate.



Summary

• Proposed a new general model: the second-order 

capacity region for wireless networks.

• Introduced a new scheduling policy, VWD, that captures 

second-order statistics (temporal variance) within a 

second-order capacity region. 

• Applied VWD on the unsolved optimization problem over 

Gilbert-Elliott channels.

• VWD outperforms other compared scheduling policies in 

both the weighted and unweighted AoI settings.
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