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Motivating examples

» Charging an Electric Vehicle (EV) given changing electricity
prices.
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» Charging an Electric Vehicle (EV) given changing electricity
prices.

> AC system deciding whether to cool a building or not.
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current inflation rate or not.
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Motivating examples

» Charging an Electric Vehicle (EV) given changing electricity
prices.

> AC system deciding whether to cool a building or not.

» Central bank deciding whether to raise interest rate given the
current inflation rate or not.

» In all cases, the agent has a state v; at time t. State contains
info: current fuel level, number of people in the building,
current inflation rate, etc.

» Electricity price, temperature, or inflation rates are
represented as \;.
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Exploiting the inherent structure in those problems

» Suppose we have a threshold function pu:V — R.
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Exploiting the inherent structure in those problems

» Suppose we have a threshold function pu:V — R.

» In the previous examples, it would be optimal to activate (i.e.
a; = 1) if the assigned value p(ve) > A¢.
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Exploiting the inherent structure in those problems

» Suppose we have a threshold function pu:V — R.
» In the previous examples, it would be optimal to activate (i.e.
a; = 1) if the assigned value p(ve) > A¢.

» intuitively, it is optimal to charge the car if its current state
(e.g. low fuel level and large distance until destination). The
policy deterministically picks the action a; = 1(u(ve) > A¢).
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Exploiting the inherent structure in those problems

» Suppose we have a threshold function pu:V — R.

» In the previous examples, it would be optimal to activate (i.e.
a; = 1) if the assigned value p(ve) > A¢.

» intuitively, it is optimal to charge the car if its current state
(e.g. low fuel level and large distance until destination). The
policy deterministically picks the action a; = 1(u(ve) > A¢).

» Threshold policies actions are monotone. E.g. If the HVAC
turns on for a certain temperature, then it would also turn on
for higher temperatures.
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Objective and contribution

Deep RL algorithms would asymptotically learn the optimal policy,
however they require more transitions {s;, a;, rt, st+1}f:1 stored
into a memory M. We can have a more efficient algorithm by
learning the optimal threshold function and in return, the optimal
threshold policy.
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Objective and contribution

Deep RL algorithms would asymptotically learn the optimal policy,
however they require more transitions {s;, a;, rt, st+1}tB:1 stored
into a memory M. We can have a more efficient algorithm by
learning the optimal threshold function and in return, the optimal
threshold policy.

Contributions

» For MDPs that admit a threshold policy, we find a simple
expression for the threshold policy gradient.
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Deep RL algorithms would asymptotically learn the optimal policy,
however they require more transitions {s;, a;, rt, st+1}tB:1 stored
into a memory M. We can have a more efficient algorithm by
learning the optimal threshold function and in return, the optimal
threshold policy.

Contributions

» For MDPs that admit a threshold policy, we find a simple
expression for the threshold policy gradient.

> We extend the optimal threshold policy gradient theorem to
the Restless multi-armed bandits (RMAB) framework.
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Objective and contribution

Deep RL algorithms would asymptotically learn the optimal policy,
however they require more transitions {s;, a;, rt, st+1}tB:1 stored
into a memory M. We can have a more efficient algorithm by
learning the optimal threshold function and in return, the optimal
threshold policy.

Contributions
» For MDPs that admit a threshold policy, we find a simple
expression for the threshold policy gradient.

> We extend the optimal threshold policy gradient theorem to
the Restless multi-armed bandits (RMAB) framework.

» We use these gradient expressions to have two off-policy,
model-free deep RL algorithms.
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Definitions for the MDP case

Define a Markov Decision Process as € = (S, A, R, P, 7).
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Definitions for the MDP case

Define a Markov Decision Process as € = (S, A, R, P, 7).

Binary action space A = {0, 1}. State space § =R x V with the
scalar state A\ € R and v € V being a discrete set of vectors.
Reward function R : S x A — Q with Q being the set of random
variables. Discount factor v € [0, 1).

Khaled Nakhleh Texas A&M

DeepTOP: Deep Threshold-Optimal Policy for MDPs and RMABs



A

Threshold policy Notations Threshold Policy Gradient Theorem R s Extension N
D [ le] [

IDP Results RMAB Results Co

Definitions for the MDP case

Define a Markov Decision Process as € = (S, A, R, P, 7).

Binary action space A = {0, 1}. State space § =R x V with the
scalar state A\ € R and v € V being a discrete set of vectors.
Reward function R : S x A — Q with Q being the set of random
variables. Discount factor v € [0, 1).

MDP generates a reward r; according to an unknown random
variable R(s¢, a;). Denote (X, v,a) = E[R((), v),a)] to be the
unknown expected one-step reward.
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The MDP objective function

Define the state-action value function under threshold function u
as

Q. (,\ v, 1(u(v) Z/A WOV A VF(N VT ((V) > X)),

v/ ey
(1)
With p, (N, v/, A, v) being the discounted state distribution.
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The MDP objective function

Define the state-action value function under threshold function u

as
Q. (,\ v, 1(u( Z/ WOV A VF(N VT ((V) > X)),
v/ ey A=
(1)
With p, (N, v/, A, v) being the discounted state distribution.
Learn the optimal threshold function parametrized by ¢ that
maximizes the objective function
A=+M
K1) —/ > Que (A v 1 (v) > V) d. 2)
==M vey
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The MDP objective function

/iwz Que (A v, 1 (v) > X)) dA.

vey

» Computing the gradient of K(u?) involves an integral over
A€ [-M,+M].
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The MDP objective function

/iwz Que (A v, 1 (v) > X)) dA.

vey
» Computing the gradient of K(u?) involves an integral over
A€ [-M,+M].
» Exploit the actions’ monotone property of threshold policies to
find a simple expression.

Khaled Nakhleh Texas A&M

DeepTOP: Deep Threshold-Optimal Policy for MDPs and RMABs



tations Threshold Policy Gradient Theorem Extension P Results B Results C

O@0000

Theorem 1: threshold policy gradient theorem for MDPs

Given the parameter vector ¢, let p(A, v) be the discounted state
distribution when the initial state is chosen uniformly at random
under the threshold policy. If all vector states v € V have distinct

values of u?(v), then,

Vok(u?) =2MV| 32 5u?(1), (@6 (1), v, 1) = Qg (17(1),v,0) ) Vu?(W).  (3)
vey
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Proof sketch for theorem 1

Let p¢(\, v) be the distribution that the state at time t is (A, v)
when the initial state is chosen uniformly at random. Let

MO = +M, M” = u?(v"), for all 1 < n < [V], and MIVH1 = — M.
For any vector state v, the threshold policy would take the same
action under all A € (M"*1,M"), and we use 7""1(v) to denote
this action.
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Proof sketch for theorem 1

Vs K =Vgy /77+ ZQ,M()\ v, 1(up ¢(V) > A))dA

vevy

A= +M
= Z V¢/ o (A v, 1(u?(v) > A))d\  (Fubini-Tonelli theorem)

vey
d A=M"
-y SV, / Qe (A, v, 71 (v))dA
vev n=0 A=Mntl
IV
_ Z Z ( ,,o v, ﬂ_n+1(v))v¢Mn _ Qud’ (Mn+1’ v, 7Tn+1(V))V¢Mn+1
veV n=0
A=M"
+ /Hw1 Ve Quo (N, v, 7" (v))dA |, (Leibniz integral rule)  (4)
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DeepTOP-MDP algorithm steps

Simplify the first term by

VI
ZZ < o (M7, v, 7™ (v)) VoM — Q6 (M, v,w"“(v))wM"*l)
V|
-3 Z ( v, v, (v € V™)) = Qo (u(v"), v, 1(v € V")))V¢u¢(v”)
=2M[V| 3" a(u?(v), V)(Qw (1 (), v, 1) = Quo (4 (v),,0) ) Vs (v).

(5)

Expanding the second term in the same way gives the gradient
expression.
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DeepTOP-MDP algorithm design

DeepTOP-MDP as an off-policy, model-free algorithm.

We maintain four neural network parameters: actor ¢, actor-target
@', critic 6, and critic-target 6'.

Critic network learns the parametrized action-value function
Qﬁ()\, v, a) under threshold function x using a minibatch of
transitions from memory M.

The estimated actor gradient is

@(bK(Md)) = é i <Qz¢ (“¢(Vtk)7 1z 1) - qus (N¢(ka)7 Viy 0)) vtﬁ/’*d)(vfk)'
©)
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Revisiting the EV charging example

You have N EVs parked at a charging station and you can only
select V' EVs for charging.
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Revisiting the EV charging example

You have N EVs parked at a charging station and you can only
select V' EVs for charging.

Decompose the problem into N sub-problems and find the optimal
threshold function for each MDP (or arm).
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Revisiting the EV charging example

You have N EVs parked at a charging station and you can only
select V' EVs for charging.

Decompose the problem into N sub-problems and find the optimal
threshold function for each MDP (or arm).

Form an alternative control problem for the Restless Multi-Armed
Bandits (RMAB:s).
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Threshold policy Notations Th

Objective function for the RMAB case

Form an alternative control problem where the agent pays an
activation cost A € [—M,+M)] if it activates the arm i. Net-reward
at time t is r; ; — Aaj ;. For each arm i, define the objective

function of maximizing

A=+M
Ki(u®) ;—/ Y Qs 1) > M)A ()

- S,‘ES,’
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Optimal threshold policy for RMABs

Theorem 2: threshold policy gradient theorem for RMABs

Given the parameter vector ¢;, let pi(s;) be the discounted state
distribution when the initial state is chosen uniformly at random
and the activation cost is A. If all states s; € S; have distinct

values of ,u?"(s,-), then,

Vs =181 32 70160 CH iy D =@ o (5,0) Vo,uli(s):  (®
B iu®i(sp) il ()
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DeepTOP-RMAB algorithm design

Two main differences from DeepTOP-MDP
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DeepTOP-RMAB algorithm design

Two main differences from DeepTOP-MDP

» Gradient update steps for the critic and actor are done
independently for each arm i =1,2,... N.

» Value of A is an artificial value that exists in the alternative
problem. Sampled for each arm from the range [-M, +M].
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Problems’ descriptions

EV charging: station decides whether it is optimal to charge the
EV or not based on its state at time t.

Inventory management: manager decides if it is optimal to buy
additional goods based on the season’s fluctuations and in-lead
times in order.

Make-to-stock production: system that produces m items with
W demand classes and buffer size s. System determines if it will
accept class orders or not.
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MDP results
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(a) EV charging. (b) Inventory management. (c) Make-to-stock production.

Figure: Average reward results for the MDP problems.
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RMAB problems’ descriptions

One-dimensional bandits: each arm has 100 states with the
reward depending on the current state of arm /. If arm i is
activated, next state is min{s; ; + 1,99} with probability p;.
Otherwise, next state is max{s;; — 1,0} with probability g;.

Recovering bandits: RMAB that captures the varying behavior of
customers on advertisement links. If an arm is activated, the next
state s; ¢ is reset to state 1. Otherwise, the state increases by 1.
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Figure: Average reward results for the one-dimensional bandits.
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Average Reward
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Figure: Average reward results for the recovering bandits.

Khaled Nakhleh Texas A&M

DeepTOP: Deep Threshold-Optimal Policy for MDPs and RMABs



d Policy Gradient Theorem RN s Extension N Results R Conclusion

» Presented a simple to compute gradient for threshold
functions to obtain the optimal threshold policy.
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» Presented a simple to compute gradient for threshold
functions to obtain the optimal threshold policy.

» Designed two algorithms: DeepTOP-MDP and
DeepTOP-RMAB for MDPs that admit a threshold policy and
RMAB:s.
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» Presented a simple to compute gradient for threshold
functions to obtain the optimal threshold policy.

» Designed two algorithms: DeepTOP-MDP and
DeepTOP-RMAB for MDPs that admit a threshold policy and
RMAB:s.

» The two algorithms outperform the baselines.
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» Presented a simple to compute gradient for threshold
functions to obtain the optimal threshold policy.

» Designed two algorithms: DeepTOP-MDP and
DeepTOP-RMAB for MDPs that admit a threshold policy and
RMAB:s.

» The two algorithms outperform the baselines.

» Future direction is extending the threshold policy gradient
theorem to the multi-action setup.
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