
DeepTOP: Deep Threshold-Optimal 

Policy For MDPs and RMABs.

Overview

• Objective: learn the optimal threshold policy for control 

problems. Control problems are formed as Markov Decision 

Processes (MDPs) and Restless Multi-Armed Bandits 

(RMABs). 

• Finding the optimal policy can be reduced to finding the 

appropriate threshold given the system’s state (e.g. current 

room temperature for an AC). 

• Actions of threshold policies are monotone. Given a certain 

threshold, the optimal action for a state with an assigned 

value is also optimal for all states with a higher assigned 

value.

• We design DeepTOP: model-free, off-policy deep 

reinforcement learning algorithms for MDPs and RMABs.

• Simulation results on MDP and RMAB problems show that 

DeepTOP outperforms the state-of-the-art baselines. 
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Threshold policy gradient for MDPs

RMAB Results

Threshold policy gradient extension to RMABs

Theorem 1. Given the parameter vector 𝜙, let ҧ𝜌 (𝜆, 𝑣) be the discounted 
state distribution when the initial state is chosen uniformly at random under 

the threshold policy. If all vector states 𝑣 ∈ 𝑉 have distinct values of 𝜇𝜙 𝑣 , 
then 
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𝜙(𝑣).

Examples

MDP Results

• Theorem 2: Given the parameter vector 𝜙𝑖, let ҧ𝜌𝜆 𝑠𝑖 be the 
discounted state distribution when the initial state is chosen uniformly 
at random and the activation cost is 𝜆 If all states 𝑠𝑖 ∈ 𝑆𝑖 have distinct 
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• For an MDP, we define a threshold function as 𝜇 ∶ 𝒱 → ℝ.

• MDP is defined as a tuple ℰ = {𝒮,𝒜,ℛ, 𝒫, 𝛾}. The state space 
𝒮 = ℝ × 𝒱 consists of a scalar state 𝜆 ∈ ℝ and a discrete set of 
vectors 𝑣 ∈ 𝒱. Binary action space 𝒜 = {0,1}.

• The optimal threshold policy deterministically picks the action 
𝑎𝑡 = 1{𝜇 𝑣𝑡 > 𝜆𝑡}.

• Charging an Electric Vehicle (EV) given changing electricity 
prices.

• AC system deciding whether to cool a building or not.

• Central bank deciding whether to raise interest rate given the 
current inflation rate or not.

• Action-value function under threshold function 𝜇:

𝑄𝑢 𝜆, 𝑣, 1 𝜇 𝑣 > 𝜆

= 

𝑣∈𝒱

න
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𝜌𝜇(𝜆
′, 𝑣′, 𝜆, 𝑣) ҧ𝑟 𝜆′, 𝑣′, 1 𝜇 𝑣′ > 𝜆′ .

• Goal is to maximize the objective function

𝐾 𝜇𝜙 : = න
𝜆=−𝑀

𝜆= +𝑀


𝑣∈𝑉

𝑄𝜇𝜙(𝜆, 𝑣, 1(𝜇
𝜙(𝑣) > 𝜆)) 𝑑𝜆.

(a) EV charging.       (b) Inventory management.   (c) Make-to-stock production. 

• EV charging: station decides whether it is optimal to charge the EV or not 
based on its state at time 𝑡.

• Inventory management: manager decides if its optimal to buy additional 
goods based on the season’s fluctuations and in-lead times in orders. 

• Make-to-stock: system that produces 𝑚 items with 𝑊 demand classes and 
buffer size 𝑠. system determines if it will accept class orders or not.

• Threshold policy theorem and DeepTOP can be extended to the RMAB 
framework where each arm environment is an MDP. 

• Define a threshold function 𝜇𝑖(𝑠𝑖,𝑡 ) for arm 𝑖 in state 𝑠𝑖,𝑡 and an activation 

cost 𝜆. The threshold policy activates the arm (i.e. 𝑎𝑖,𝑡 = 1) if 𝜇𝑖 𝑠𝑖,𝑡 > 𝜆.

• The Whittle index policy can be viewed as the optimal threshold function. 

• Goal: obtain the optimal control policy that activates the largest 𝑉-valued 
arms out of N arms.

• One-dimensional bandits: Each arm has 100 states with the reward 

depending on the current state of arm 𝑖 as 𝑟𝑖,𝑡 = 1 −
𝑠𝑖,𝑡 −99

99

2
. If 

arm is activated, next state is min{𝑠𝑖,𝑡 + 1, 99} with probability 𝑝𝑖. 

Otherwise, next state is max{𝑠𝑖,𝑡 − 1, 0} with probability 𝑞𝑖.

• Recovering bandits:  RMAB that studies the varying behavior of 
customers on advertisement links. If an arm is activated, the state 𝑠𝑖,𝑡
is reset to state 1. Otherwise, the state increases by 1.

(a) N = 10. V = 3.        (b) N = 20. V = 5.           (c) N = 30. V = 6.

(a) N = 10. V = 3.        (b) N = 20. V = 5.           (c) N = 30. V = 6.

One-dimensional bandits 

Recovering bandits


